Sixth Semester B.E. Degree Examination, June/July 2015 Compiler Design

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART -- A

- a. Explain the various phases of compiler. Show the translations for an assignment statement position = initial + rate * 60, clearly indicate the output of each phase. (12 Marks)
 - b. Construct transition diagram for the following: i) Relational operators; ii) Unsigned number. (08 Marks)
- 2 a. Show that the following grammar is ambiguous: $E \to E + E / E * E / (E) / id$. Write an equivalent unambiguous grammar for the same. (06 Marks)
 - b. Write a recursive descent parser for the grammar: $S \rightarrow cAd$ $A \rightarrow ab/a$ and for the input "cad" trace the parser. (04 Marks)
 - c. Consider the grammar:

$$E \rightarrow 5 + T/3 - T$$

$$T \rightarrow V/V * V/V + V$$

$$V \rightarrow a/b$$

- i) Do the left factoring for the above grammar.
- ii) Obtain FIRST and FOLLOW table for the above grammar.
- iii) Construct predictive parsing table for the above grammar.

(10 Marks)

- a. What is handle pruning Explain with the help of the grammar. S → SS + / SS * / a and input string aaa * a+±; give a bottom-up parse of the given input string. (10 Marks)
 - b. For the following grammar $S \rightarrow 0S1/01$ indicate the handle in the following right sentential form 00001111. (04 Marks)
 - c. Show that the following grammar is not LL(1) without constructing parsing table:

$$S \rightarrow iC + SS' / a$$

$$S' \rightarrow aS' \in$$

$$C \rightarrow b$$

(06 Marks)

- 4 a. Consider the following grammar
 - $S \rightarrow CC$
 - $C \rightarrow cC$
 - $C \rightarrow d$
 - i) Obtain canonical collection of LR (0) items.
 - ii) Construct SLR (1) parsing table.
 - iii) Show the sequence of moves made by the parser for the string ccdd. (12 Marks)
 - b. Consider the following augmented grammar

$$S' \rightarrow S$$

$$S \rightarrow AA$$

$$A \rightarrow Aa/b$$

Obtain LR(1) items.

(08 Marks)

PART - B

- 5 a. Obtain SDD for simple type declaration. Construct a dependency graph for the declaration int a, b, c along with evaluation order. (08 Marks)
 - b. For the given productions shown below, write semantic rules and construct annotated parse tree for

3 * 5 + 4n

 $L \rightarrow En \quad E \rightarrow E1 + T \quad E \rightarrow T$

 $T \rightarrow T1 * F \qquad T \rightarrow F \qquad F \rightarrow (E) \qquad F \rightarrow digit.$

(08 Marks)

c. Define S-attributed and L-attributed definitions with examples.

(04 Marks)

- 6 a. Explain how DAG will help in intermediate code generation? Construct a DAG and a 3-address code for the expression a + a * (b c) + (b c) * d. (08 Marks)
 - b. Explain the following with an example:

i) Quadruples

ii) Triples

iii) Indirect triples.

(06 Marks)

c. Explain syntax directed translation of switch statement.

(06 Marks)

- 7 a. Describe the general structure of an activation record. Explain the purpose of each item in the activation record. (10 Marks)
 - b. What is garbage collection? Explain the design goals of garbage collector.

(10 Marks)

8 a. Briefly discuss the various issues in code generation phase.

(10 Marks)

- b. Explain the following code optimization with examples:
 - i) Finding local common sub expression.
 - ii) Dead code elimination.

(10 Marks)